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Evaluating Model Accuracy for Model-Based Reasoning
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performance to characterize how well a model
captures the behavior of the target system.

Model-based reasoning has been proposed as a
general methodology for such diverse tasks as
monitoring, diagnosis, control, and design. In
this approach, a behavioral model mimicking the
structure of the target system is used to reason
about expected performance of the target system.
However, most such work does not explicitly
account for inaccuracies in the model.

This paper describes an approach to automatically
assessing the accuracy of various components of
a model. In this approach, actual data from
operation of the target system is used to drive
statistical measures to evaluate the prediction
accuracy of various portions of the model. We
describe how these statistical measures of model
accuracy can be used in model-based reasoning for
monitoring and design. We then describe
appfication of these techniques to monitoring and
design of the water recovery system of the
Environmental Control and Life Support System
(ECLSS) of Space Station Freedom.

Keywords: model-based monitoring, diagnosis,
control and design, validation of knowledge-basod
systems, model-based simulation

This paper describes a statistical approach
to measuring the prediction error of a model
based upon an analysis of model prediction
performance on actual data. This analysis
produces a statistical model of expected
model prediction error. This model of the
model error is then used in the model-based

reasoning tasks of monitoring and design.

The next section of this paper describes
how the statistical techniques are used to
create a model of the error and how this
model of the error can be used to calculate

confidence intervals. The following section
describes how this confidence interval
information can be used in model-based

monitoring and design tasks. This section
also describes several applications of this
error model to monitoring and design of the
Environmental Control and Life Support

System for Space Station Freedom. The
discussion section of this paper focuses upon
ongoing work to increase the accuracy of the
error models by applying machine learning
techniques to learn error models.

I. Introduction

Model based reasoning has been
advocated as a general approach to a wide
variety of tasks such as monitoring [Doyle et
al. 89, Doyle et al. 91, Dvorak & Kuipers
89], diagnosis and interpretation [Davis and
Hamscher 88], control [Scarl et al. 88], and

design [Chien et al. 91a, Chien et al. 91b,
Bose & Rajamoney 91]. However, despite
this strong effort, comparatively little work
has focused upon using actual data on model
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2. Evaluating Model Accuracy

Model-based reasoning uses a model of a

system to predict the behavior of the system
under the conditions included in the scope of

the model. It is useful for applications using
a model to know how accurately the model

predicts the behavior of a system being
modeled. Instead of simply predicting that a
measure will take on some value, it is more
useful to state how confident the model is in

predicting that value.
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Model accuracy can be evaluated by
comparing model behavior to observed
system behavior. Through analysis of errors
in predicting system behavior, we can
estimate the amount of error we expect a
model to produce. Data obtained by
performing model evaluation studies can
provide a basis on which to model the errors
a model produces.

Model error (A) is defined as the

difference of the model predicted value (m)
based on previous observed system values
and the current observed system value (o) for
a given system state:

(1) A=m-o

For our applications, the time step is
relatively constant. Thus the model is
making a prediction of the i-th time step from
the data of the (i- 1)th time step. In Figure 1,
the model error is the difference between the

model predicted value and the observed
system value over time.
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Fig 1. Graph showing difference between
model predicted value and observed
system value over time

For a given operating mode of a system,
some number (n) of observations of one time
step model predictions are taken, and the
error computed for each. This results in a
sampled model error distribution of A1, A2,
.... A n. From this distribution we develop a
general model of the error. We observed our
samples to be approximately normally
distributed. Figure 2 shows a histogram of
model error for a particular sensor. Given
this sampled error distribution, we estimate

that the true model error is normally

distributed with mean X and variance s2.
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Fig 2. Histogram showing model error
distribution for sensor KP02

For a given operating mode of a system,
we evaluate model accuracy by determining
the probability (p) that the true system
measurement (t) will take on a value within a

range of values (m-e, m+e) around the model
predicted value (m). This probability can be
determined given the distribution of the
model error. Alternatively, by setting an
acceptable probability bound, we can
determine the range of values that the true
system will take on with that probability.
Equation 2 shows how this probability is

determined given _, the cumulative
distribution function of the standard normal
distribution.

(2) P(m-e _<t < m+e) =

¢ ¢
Using the probability table for the

standard normal distribution, this measure

quantifies the accuracy with which a model
predicts the true system measurement.

3. Applying the Error Model in
Model-based Reasoning

This section describes two applications of
confidence intervals to model-based

reasoning: model-based monitoring as
applied to discrepancy detection and model-
based prediction for design.
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3.1 Application to Model-based Monitoring

One application of model accuracy is in
model-based monitoring [Doyle et al. 89,
Dvorak & Kuipers 89]. In model-based
monitoring, a model of the target system is
used to predict sensor values. Deviations
from the predicted values are indications of
abnormal behavior and are thus indicative of

sensors which should be reported to
operators. However, if portions of the model
in certain operating modes are inherently
inaccurate because of noise or poor
understanding or predictability of the
occurring phenomenon, the suength of the
model's predictions should be
correspondingly reduced.

One method to account for model

inaccuracy in model-based monitoring is use
of a running average of model/actual
deviation [Doyle et al. 91]. In this approach,
a running average of the deviation between
model predicted and actual values is
maintained. By tracking the current deviation
minus the running average of the deviation,
the current deviation cam be ignored in cases
where the model has not been tracking the
system behavior accurately.

While the deviation from running average
deviation measures the recent performance of
the model, statistical measures over all

available historical data provide a measure of
past historical performance. With a
confidence intervalcapability as described in
the previous section, a more direct approach
to calibrating deviation scores according to
model accuracy can be applied. Specifically,
the statistical model of the prediction error of
the model can be used to generate a measure
of the unusualness of a deviation of the
model from the observed value.

For example, consider the following
example from our ECLSS monitoring
application. Using the techniques described
in the previous section, a sensor KP02 is
measured to have a error with a measured
distribution of mean -0.19 and standard

deviation 1.89 in system operating mode
PROCESS. If we observe a discrepancy of 3
PSIG between the observed and predicted
values, we can now use the equations shown

in Section 2 to produce a confidence rating of
0.89 that the model is within 3 PSIG of the

actual. Thus high confidence values for the
error being less than the current deviation
indicate unusual deviations.

As a second application to model-based
monitoring, consider the case where a model
historically predicts well but has recently
been predicting poorly. This may indicate a
persistent unexplained phenomenon affecting
the sensor or portion of the system in
question. Such a situation could be detected
by determining if the running average of the
deviation is at a level which is relatively
unusual given the error model (e.g. for a
running average deviation e, P(-e _ A < e) is
high). This provides a measure of the

unusualness of the running average of the
deviation. Note that this monitoring measure
and the previous one are complementary.
The unusualness of the current deviation

catches quickly developing departures from
normal operations, but is susceptible to
random noise. The unusualness of the

running average of the deviation is not
susceptible to random noise, but takes longer
to manifest and inform.

3.2 Application to Model-based Prediction
for Design

Another application of model-based

reasonin.g is in evaluating sensor placements
for asststance in the design process.
Specifically, we have been working on
approaches to evaluate sensor placements
with respect to a diagnosability criterion
[Chien et al. 91]. In this approach a model of
the target system is used to determine how
specific proposed sensors would report
altered scores in the event of a fault

occurrence. More specifically, we evaluate
how well a sensor can distinguish between
classes of states with respect to three criteria.
For the purposes of fault detection, the
relevant distinction is between faulted and

non-faulted states. For the purposes of fault
isolation, the relevant distinction is between
faulted states.

Towards evaluating diagnosability, we
have developed three measures. First,
Discriminability measures how much of a
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divergencethemodelpredicts would occur in
comparing between the two states. Second,
Accuracy measures the confidence in the

model's prediction of the expected
divergence. Third, Timeliness measures the
time lag between the occurrence of the fault
and the discrimination detected by the sensor.

Using the measure for model error we
have described in this paper, we can
formulate the confidence that the predicted
divergence would be predicted and the actual
value not deviate as a probability. The lower
the probability of this occurrence, which
represents the model predicting a change that
does not occur, the more likely the sensor
will be able to perform the discrimination.

3.3 Examples from Application to the ECLSS
Testbed

Our sensor placement approach is being
tested upon the water reclamation subsystem
of the Environmental Control and Life

Support System (ECLSS) for Space Station
Freedom. A model describing the behavior
of the Multifiltration Subsystem (MF) in
terms of fluid flow and heat transfer has been

constructed. This model was developed via a
combination of study of design
documentation (i.e., schematics, etc.) and
consultation with domain experts (e.g. the

operators of the testbed). This model has
been validated by comparison against actual
data from the subsystem testbed undergoing
evaluation at the Marshall Space Flight Center
in Huntsville, Alabama. We also have

constructed models of the Vapor
Compression and Distillation (VCD) and
Volatile Removal Assembly (VRA)
subsystems of SSF ECLSS. Together, these
models represent coverage of virtually the
entire water-side of SSF ECLSS. We are

also in the process of extending our model to
cover ECLSS air-side subsystems.

Figure 3 below shows the ECLSS

multifiltration subsystem. In this subsystem,
the water first passes through a pump at the
inlet to the MF system. Next, the water

passes through a coarse filter before entering
the sterilization loop. In the sterilization loop
the water is heated in the regenerative heat
exchanger and then by the in-line heater after
point 3. Within the sterilizer reservoir, the
temperature of the water is maintained at
250°F for several minutes. In the second

portion of the subsystem, the water passes
through a set of unibed filters designed to
remove particulate contaminants from the

water. Possible sensor types are flow rate,
water pressure, and temperature. Possible
sensor locations are indicated by ovals in
Figure 3.
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Fig 3. The Multifiltration Subsystem
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In model-based monitoring, the
empirically derived model accuracy scores
impact monitoring in the following way. The
process mode model of the conductivity
sensor KT02 at point 4 exhibits poor model
accuracy (empirically derived mean of 2.15
and standard deviation of 27.24). Thus,

relatively large deviations from model
predicted values such as 4, with a confidence
rating of 0.52, do not cause the sensor score

to be brought to the attention of the operator.
However, the process mode model of sensor
ICP02 is more accurate (mean -0.19 and

standard deviation 1.89) so that relatively
small deviations on the order of 4, with a
confidence rating of 0.97, cause the sensor to
be flagged and the sensor value to be brought
to the attention of the operator.

In model-based diagnosability

assessment, again the model accuracy figures
heavily in evaluating certain sensors. For
example, one possible fault is unibed
loading, which occurs when particulate
matter gets caught in the unibed filters. This
fault has several effects. First, a pressure
drop would occur, causing a lower pressure
at location 9. Second, unibed performance
would decrease, resulting in an increase in
conductivity downstream from the unibeds.
Third, if loading is significant, flow in the
entire subsystem may decrease. Again,
because the conductivity models are not very
accurate, the Accuracy measure of the
diagnosability evaluation would score the
pressure sensor placement higher than the
conductivity sensor placement for fault
detection of this fault.

4. Discussion

This work is preliminary; there are a
number of outstanding issues. One issue is
the selection of a normal distribution to model

the error. Other possible distributions may
model the error more accurately. A measure
of how well the derived error model matches
the observed distribution would be useful in

assessing the degree of confidence in the
error model.

Another issue is our choice to model the
error in absolute terms rather than as a

percentage bound based upon the current
model prediction (e.g. 4 PSIG :t: 5% rather
than 4 PSIG :i: .20). This has ramifications if
the model error tends to increase as a function

of the model predicted value. A cursory
analysis indicates that in general, in our
domain, the error is not strongly correlated
with the model predicted value so that
modelling the absolute error seems
reasonable.

We also model the model error

independent of potentially relevant factors
such as other causally related model predicted
values. For example, the model may use an
equation to derive a temperature in the MF
subsystem that is accurate only in cases
where the water pressure is high. One
extension of our work focuses upon using
machine learning techniques to determine
what other potentially relevant factors would
be good indicators of model accuracy. In this
work we are investigating applying GID3* to
learn a model accuracy function for a sensor
S based upon model predicted value for S
and other sensors.

Another outstanding issue is that of
dealing with variable time steps. The
accuracy of the model's predictions clearly
depends upon how far into the future the
model is required to make predictions.
Currently, our model of the model prediction
error does not account for this variable.

5. Conclusion

This paper has described an approach to
evaluating the accuracy of a model's
predictions. This approach uses statistical
methods to develop a model of expected error
in model predictions. This paper has also
described how this statistical measure for
model error can be used in two model-based

reasoning tasks: model-based monitoring and
model-based reasoning for evaluating sensor
placements. By application of our derived
measure for model accuracy, the degree of
accuracy of the model of the target system
can be accounted for to increase the

usefulness of model-based reasoning in both
monitoring and evaluation of sensor
placements.
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